

The Genome Taxonomy Network

The Genome Taxonomy Network, or GTNet, is a taxonomic classifier that uses a deep neural network to label DNA
sequences with the Genome Taxonomy Database taxonomy [https://gtdb.ecogenomic.org/].

Installation

GTNet is available on the Python Package Index.

pip install gtnet

GPU acceleration

GTNet uses PyTorch [https://pytorch.org/], so it is capable of GPU acceleration with CUDA. As long as
CUDA is available on your system, GTNet will detect if CUDA is available and make GPU acceleration available.

If your system is equipped with NVIDIA GPUs, but are unsure if CUDA is installed, we recommend installing PyTorch
and the CUDA Toolkit [https://developer.nvidia.com/cuda-toolkit] using Conda.

For example, if you would like to run PyTorch with CUDA Toolkit 11.8, you can run the following commands:

conda create -n gtnet-env
conda activate gtnet-env
conda install pytorch pytorch-cuda=11.8 -c pytorch -c nvidia
pip install gtnet

Running GTNet

GTNet comes with multiple commands. The simplest way of running GTNet is to use the classify command.

gtnet classify genome.fna > genome.tax.csv

This command generates one classification for the entire file, and should be used to get classification for metagenome bin.
Use the -s/--seqs flag to get classifications for the individual sequences in genome.fna

Attention

The first time you run classify and predict (see below), the model file will be downloaded and stored in the same
directory that the gtnet package is installed in. Therefore, for the this to be successful, you must have write privileges
on the directory that gtnet is installed in.

gtnet classify --seqs genome.fna > genome.seqs.tax.csv

The classify command can take multiple fasta files, and will produce line per file in the output. For example, the following
command will contain two lines:

gtnet classify bin1.fna bin2.fna > bins.tax.csv

GTNet steps

GTNet consists of two main steps: 1) get scored predictions of taxonoimc assignments and 2) filter
scored predictions. The previous command combines these two commands into a single command with a
default false-positive rate. The two steps have been separated into two commands for those who
want to experiment with different false-positive rates.

Getting predictions

To get predictinos for all sequences in a Fasta file, use the predict subcommand. This command also accepts multiple fasta files
and the -s/--seqs argument for getting predictions for individual sequences.

gtnet predict genome.fna > genome.tax.raw.csv

Filtering predictions

After getting predicted and scored taxonomic classifications, you can filter the raw classifications
to a desired false-positive rate.

gtnet filter --fpr 0.05 genome.tax.raw.csv > genome.tax.csv

The filter command supports predictions for whole files and individual sequences.

GPU acceleration

If CUDA is available on your system, the classify and predict commands will have the option -g/--gpu to enable
using the available GPU to accelerate neural network calculations.

API Documentation

GTNet

	Classification command
	classify

	Predict command
	predict

	run_torchscript_inference

	Filter command
	get_cutoffs

	filter

	filter_predictions

	Utility functions
	parse_logger

	get_logger

	DeployPkg

	load_deploy_pkg

	GPUModel

	check_cuda

	check_device

	write_csv

	Full list of GTNet package contents
	Submodules

	Module contents

Module Index

gtnet.classify module

	
gtnet.classify.classify(argv=None)

	Get taxonomic classification for each sequence in a Fasta file.

	Parameters:

	argv (Namespace, default=sys.argv) – The command-line arguments to use for running this command

gtnet.predict module

	
gtnet.predict.predict(argv=None)

	Get network predictions for each sequence in Fasta file

	Parameters:

	argv (Namespace, default=sys.argv) – The command-line arguments to use for running this command

	
gtnet.predict.run_torchscript_inference(fastas, model, conf_models, window, step, vocab, seqs=False, n_chunks=10000, device=device(type='cpu'), logger=None)

	Run Torchscript inference

	Parameters:

	
	fastas (str [https://docs.python.org/3.11/library/stdtypes.html#str]) – The path to the Fasta file with sequences to do inference on

	model (RecursiveScriptModule) – The Torchscript model to run inference with

	conf_models (dict [https://docs.python.org/3.11/library/stdtypes.html#dict]) – A dictionary with the confidence model for each taxonomic level. Each model should be a RecursiveScriptModule.
The expected keys in this dict are ‘domain’, ‘phylum’, ‘class’, ‘order’, ‘family’, ‘genus’ and ‘species’.

	window (int [https://docs.python.org/3.11/library/functions.html#int]) – The length of the sliding window to use for doing inference

	step (int [https://docs.python.org/3.11/library/functions.html#int]) – The length of the step of the sliding window to use for doing inference

	vocab (str [https://docs.python.org/3.11/library/stdtypes.html#str]) – The vocabulary used for training model

	n_chunks (int [https://docs.python.org/3.11/library/functions.html#int], default=10000) – The length of the step of the sliding window to use for doing inference

	device (device, default=torch.device('cpu')) – The Pytorch device to run inference on

	logger (Logger) – The Python logger to use when running inference

gtnet.filter module

	
gtnet.filter.get_cutoffs(rocs, fpr)

	Get score cutoffs to achieve desired false-positive rate

	Parameters:

	
	rocs (dict [https://docs.python.org/3.11/library/stdtypes.html#dict]) – The ROC curves for each taxonomic level

	fpr (float [https://docs.python.org/3.11/library/functions.html#float]) – The false-positive rate to get the score for

	
gtnet.filter.filter(argv=None)

	Filter raw taxonomic classifications

	
gtnet.filter.filter_predictions(pred_df, cutoffs)

	Filter taxonomic classification predictions

	Parameters:

	
	pred_df (DataFrame) – The DataFrame containing predictions and confidence scores for each taxonomic level

	cutoffs (dict [https://docs.python.org/3.11/library/stdtypes.html#dict]) – A dictionary containing the confidence score cutoff for each taxonomic level

gtnet.utils module

	
gtnet.utils.parse_logger(string)

	

	
gtnet.utils.get_logger()

	

	
class gtnet.utils.DeployPkg

	Bases: object [https://docs.python.org/3.11/library/functions.html#object]

A class to handle loading and manipulating the deployment package

	
classmethod check_pkg()

	

	
path(path)

	Map paths to be relative to current working directory

	
property manifest

	

	
__getitem__(key)

	

	
gtnet.utils.load_deploy_pkg(for_predict=False, for_filter=False, contigs=False)

	

	
class gtnet.utils.GPUModel(model, device)

	Bases: Module

Initialize internal Module state, shared by both nn.Module and ScriptModule.

	
forward(x)

	Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
training: bool [https://docs.python.org/3.11/library/functions.html#bool]

	

	
gtnet.utils.check_cuda(parser)

	

	
gtnet.utils.check_device(args)

	

	
gtnet.utils.write_csv(output, args)

	

gtnet package

Submodules

	gtnet.classify module
	classify

	gtnet.filter module
	get_cutoffs

	filter

	filter_predictions

	gtnet.main module
	Command
	Command.get_func

	print_help

	run

	gtnet.predict module
	predict

	run_torchscript_inference

	gtnet.sequence module
	FastaSequenceEncoder
	FastaSequenceEncoder.encode

	FastaSequenceEncoder.get_dna_map

	FastaSequenceEncoder.get_revcomp_map

	FastaReader

	gtnet.utils module
	parse_logger

	get_logger

	DeployPkg
	DeployPkg.check_pkg

	DeployPkg.path

	DeployPkg.manifest

	DeployPkg.__getitem__

	load_deploy_pkg

	GPUModel
	GPUModel.forward

	GPUModel.training

	check_cuda

	check_device

	write_csv

Module contents

gtnet.classify module

	
gtnet.classify.classify(argv=None)

	Get taxonomic classification for each sequence in a Fasta file.

	Parameters:

	argv (Namespace, default=sys.argv) – The command-line arguments to use for running this command

gtnet.filter module

	
gtnet.filter.get_cutoffs(rocs, fpr)

	Get score cutoffs to achieve desired false-positive rate

	Parameters:

	
	rocs (dict [https://docs.python.org/3.11/library/stdtypes.html#dict]) – The ROC curves for each taxonomic level

	fpr (float [https://docs.python.org/3.11/library/functions.html#float]) – The false-positive rate to get the score for

	
gtnet.filter.filter(argv=None)

	Filter raw taxonomic classifications

	
gtnet.filter.filter_predictions(pred_df, cutoffs)

	Filter taxonomic classification predictions

	Parameters:

	
	pred_df (DataFrame) – The DataFrame containing predictions and confidence scores for each taxonomic level

	cutoffs (dict [https://docs.python.org/3.11/library/stdtypes.html#dict]) – A dictionary containing the confidence score cutoff for each taxonomic level

gtnet.main module

	
class gtnet.main.Command(module, doc)

	Bases: object [https://docs.python.org/3.11/library/functions.html#object]

	
get_func()

	

	
gtnet.main.print_help()

	

	
gtnet.main.run()

	

gtnet.predict module

	
gtnet.predict.predict(argv=None)

	Get network predictions for each sequence in Fasta file

	Parameters:

	argv (Namespace, default=sys.argv) – The command-line arguments to use for running this command

	
gtnet.predict.run_torchscript_inference(fastas, model, conf_models, window, step, vocab, seqs=False, n_chunks=10000, device=device(type='cpu'), logger=None)

	Run Torchscript inference

	Parameters:

	
	fastas (str [https://docs.python.org/3.11/library/stdtypes.html#str]) – The path to the Fasta file with sequences to do inference on

	model (RecursiveScriptModule) – The Torchscript model to run inference with

	conf_models (dict [https://docs.python.org/3.11/library/stdtypes.html#dict]) – A dictionary with the confidence model for each taxonomic level. Each model should be a RecursiveScriptModule.
The expected keys in this dict are ‘domain’, ‘phylum’, ‘class’, ‘order’, ‘family’, ‘genus’ and ‘species’.

	window (int [https://docs.python.org/3.11/library/functions.html#int]) – The length of the sliding window to use for doing inference

	step (int [https://docs.python.org/3.11/library/functions.html#int]) – The length of the step of the sliding window to use for doing inference

	vocab (str [https://docs.python.org/3.11/library/stdtypes.html#str]) – The vocabulary used for training model

	n_chunks (int [https://docs.python.org/3.11/library/functions.html#int], default=10000) – The length of the step of the sliding window to use for doing inference

	device (device, default=torch.device('cpu')) – The Pytorch device to run inference on

	logger (Logger) – The Python logger to use when running inference

gtnet.sequence module

	
class gtnet.sequence.FastaSequenceEncoder(window, step, vocab=None, padval=None, min_seq_len=100, device=device(type='cpu'))

	Bases: object [https://docs.python.org/3.11/library/functions.html#object]

	
encode(seq)

	

	
classmethod get_dna_map(vocab=None)

	Create data structures for mapping DNA sequence to

	Returns
	vocab: the DNA vocabulary used for building the data structures
basemap: a 128 element array for mapping ASCII character values to encoded values
rcmap: an array for mapping between complementary characters of encoded values

	
classmethod get_revcomp_map(vocab)

	

	
class gtnet.sequence.FastaReader(encoder, *fastas, parallel=False)

	Bases: Process

gtnet.utils module

	
gtnet.utils.parse_logger(string)

	

	
gtnet.utils.get_logger()

	

	
class gtnet.utils.DeployPkg

	Bases: object [https://docs.python.org/3.11/library/functions.html#object]

A class to handle loading and manipulating the deployment package

	
classmethod check_pkg()

	

	
path(path)

	Map paths to be relative to current working directory

	
property manifest

	

	
__getitem__(key)

	

	
gtnet.utils.load_deploy_pkg(for_predict=False, for_filter=False, contigs=False)

	

	
class gtnet.utils.GPUModel(model, device)

	Bases: Module

Initialize internal Module state, shared by both nn.Module and ScriptModule.

	
forward(x)

	Define the computation performed at every call.

Should be overridden by all subclasses.

Note

Although the recipe for forward pass needs to be defined within
this function, one should call the Module instance afterwards
instead of this since the former takes care of running the
registered hooks while the latter silently ignores them.

	
training: bool [https://docs.python.org/3.11/library/functions.html#bool]

	

	
gtnet.utils.check_cuda(parser)

	

	
gtnet.utils.check_device(args)

	

	
gtnet.utils.write_csv(output, args)

	

Updating GTNet

As the GTDB taxonomy [https://gtdb.ecogenomic.org/] is updated, GTNet will also need to be updated. This amounts
to retraining the network with the new taxonomy and updating the gtnet software [https://github.com/exabiome/gtnet]
to use the new model and taxonomy.

Training a new model

Software for training GTNet is available in the deep-taxon [https://github.com/exabiome/deep-taxon] repository.

Uploading to OSF

Once a model is trained, calibrated, and packaged, the deployment package needs to be made publicly available. GTNet is
currently carried hosted on OSF [https://osf.io/cwaqs/].

Updating the gtnet software

After training a new model and packaging the model, the DeployPkg class will need to be
updated with the new URL and checksum of the new deployment package. This can be done starting around
here [https://github.com/exabiome/gtnet/blob/b9ba8a4fb1a63affd9047005c92c12799df9c2b7/src/gtnet/utils.py#L36]
in the code.

GTNet Performance

Attention

This page is currently under construction. The results presented here may not accurately reflect what is said in text.

Taxonomic classifiers fall into two main categories: fast-and-incomplete or slow-and-complete. GTNet strives to be
both fast and complete. In this page, we demonstrate GTNet capabilities by comparing to state-of-the-art methods
from each of these categories. We compare to Sourmash [https://sourmash.readthedocs.io/en/latest/index.html], a
fast-and-incomplete method, and CAT [https://github.com/dutilh/CAT], a slow-and-complete method.

Our choice of tools for comparison should not be perceived as a criticism or an endorsement for either tool. These
tools were chosen based on their ease of use for labelling contigs with the GTDB taxonomy and the algorithmic
approaches underlying these tools.

Here are accuracy comparisons for a subset of non-representative GTDB taxa.

[image: _images/accuracy.png]
Here are speed comparisons for a subset of 40 non-representative genomes.

[image: _images/runtime.png]

Copyright

The Genome Taxonomy Network (GTNet) Copyright (c) 2022, The
Regents of the University of California, through Lawrence Berkeley
National Laboratory (subject to receipt of any required approvals
from the U.S. Dept. of Energy). All rights reserved.

If you have questions about your rights to use or distribute this software,
please contact Berkeley Lab’s Intellectual Property Office at
IPO@lbl.gov.

NOTICE. This Software was developed under funding from the U.S. Department
of Energy and the U.S. Government consequently retains certain rights. As
such, the U.S. Government has been granted for itself and others acting on
its behalf a paid-up, nonexclusive, irrevocable, worldwide license in the
Software to reproduce, distribute copies to the public, prepare derivative
works, and perform publicly and display publicly, and to permit others to do so.

License

The Genome Taxonomy Network (GTNet) Copyright (c) 2022, The
Regents of the University of California, through Lawrence Berkeley
National Laboratory (subject to receipt of any required approvals
from the U.S. Dept. of Energy). All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

(1) Redistributions of source code must retain the above copyright notice,
this list of conditions and the following disclaimer.

(2) Redistributions in binary form must reproduce the above copyright
notice, this list of conditions and the following disclaimer in the
documentation and/or other materials provided with the distribution.

(3) Neither the name of the University of California, Lawrence Berkeley
National Laboratory, U.S. Dept. of Energy nor the names of its contributors
may be used to endorse or promote products derived from this software
without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS “AS IS”
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

You are under no obligation whatsoever to provide any bug fixes, patches, or
upgrades to the features, functionality or performance of the source code
(“Enhancements”) to anyone; however, if you choose to make your Enhancements
available either publicly, or directly to Lawrence Berkeley National Laboratory,
without imposing a separate written license agreement for such Enhancements,
then you hereby grant the following license: a non-exclusive, royalty-free
perpetual license to install, use, modify, prepare derivative works, incorporate
into other computer software, distribute, and sublicense such enhancements or
derivative works thereof, in binary and source code form.

 Python Module Index

 g

 		 	

 		
 g	

 	[image: -]
 	
 gtnet	

 	
 	
 gtnet.classify	

 	
 	
 gtnet.filter	

 	
 	
 gtnet.main	

 	
 	
 gtnet.predict	

 	
 	
 gtnet.sequence	

 	
 	
 gtnet.utils	

Index

 _
 | C
 | D
 | E
 | F
 | G
 | L
 | M
 | P
 | R
 | T
 | W

_

 	
 	__getitem__() (gtnet.utils.DeployPkg method)

C

 	
 	check_cuda() (in module gtnet.utils)

 	check_device() (in module gtnet.utils)

 	
 	check_pkg() (gtnet.utils.DeployPkg class method)

 	classify() (in module gtnet.classify)

 	Command (class in gtnet.main)

D

 	
 	DeployPkg (class in gtnet.utils)

E

 	
 	encode() (gtnet.sequence.FastaSequenceEncoder method)

F

 	
 	FastaReader (class in gtnet.sequence)

 	FastaSequenceEncoder (class in gtnet.sequence)

 	
 	filter() (in module gtnet.filter)

 	filter_predictions() (in module gtnet.filter)

 	forward() (gtnet.utils.GPUModel method)

G

 	
 	get_cutoffs() (in module gtnet.filter)

 	get_dna_map() (gtnet.sequence.FastaSequenceEncoder class method)

 	get_func() (gtnet.main.Command method)

 	get_logger() (in module gtnet.utils)

 	get_revcomp_map() (gtnet.sequence.FastaSequenceEncoder class method)

 	GPUModel (class in gtnet.utils)

 	
 gtnet

 	module

 	
 gtnet.classify

 	module

 	
 	
 gtnet.filter

 	module

 	
 gtnet.main

 	module

 	
 gtnet.predict

 	module

 	
 gtnet.sequence

 	module

 	
 gtnet.utils

 	module

L

 	
 	load_deploy_pkg() (in module gtnet.utils)

M

 	
 	manifest (gtnet.utils.DeployPkg property)

 	
 module

 	gtnet

 	gtnet.classify

 	gtnet.filter

 	gtnet.main

 	gtnet.predict

 	gtnet.sequence

 	gtnet.utils

P

 	
 	parse_logger() (in module gtnet.utils)

 	path() (gtnet.utils.DeployPkg method)

 	
 	predict() (in module gtnet.predict)

 	print_help() (in module gtnet.main)

R

 	
 	run() (in module gtnet.main)

 	
 	run_torchscript_inference() (in module gtnet.predict)

T

 	
 	training (gtnet.utils.GPUModel attribute)

W

 	
 	write_csv() (in module gtnet.utils)

 _images/accuracy.png
Percent of all sequences

100

80

60

40

20

GTNet

CAT

Sourmash

Total classifications
Correct classifications

|1

Phylum Class Order

Family

Genus

Species

_images/runtime.png
Run time in seconds

11482 (10.5)

1094 (1.0)
267 (0.24) 9 (0.04)
—
GTNet GTNet-GPU CAT Sourmash

_static/file.png

nav.xhtml

 Table of Contents

 		
 The Genome Taxonomy Network

_static/minus.png

_static/plus.png

_static/gtnet-favicon.png

_static/gtnet.png
GTNet

